Abstract

The performance of uniaxially strained phosphorene tunneling field-effect transistors (TFETs) is assessed by first-principles-based quantum mechanical simulations in this letter. Due to the highly anisotropic band structure, the devices without strain along the armchair direction (AD) show superior performance to those without strain along the zigzag direction (ZD), and the same tendency is maintained with increasing compressive strain. However, tensile strain induces band switching between the first and second conduction subbands, where the heavy effective mass of electrons along the ZD becomes light, while the opposite is observed along the AD. Furthermore, a point on the $\Gamma$ to X path starts to contribute dominantly to band-to-band tunneling and improves the ON-state current of ZD TFETs, which becomes comparable to that of AD TFETs. These results demonstrate that, through strain engineering, the performance gap between AD and ZD TFETs can be significantly narrowed, lessening the orientation dependence of phosphorene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.