Abstract
The idea of using a multiple (more than two) symbol observation interval to improve error probability performance is applied to differential detection of trellis-coded multiple phase-shift keying (MPSK) over an additive white Gaussian noise (AWGN) channels. An equivalent Euclidean distance measure per trellis branch is determined for this detection scheme. This is used to define an augmented (larger multiplicity) trellis code whose distance measure is the conventional squared Euclidean distance typical of conventional trellis-coded modulation on the AWGN. Such an augmented multiple trellis code is a convenient mathematical tool for simplifying the analysis. Results are obtained by a combination of analysis and computer simulation. It is shown that only a slight increase (e.g. one symbol) in the length of the observation interval will provide a significant improvement in bit error probability performance. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.