Abstract

The effects of three cultivars, two water regimes and two rates of applying nitrogen fertilisers were tested when studying the performance of rice ( Oryza sativa L.) near to, and distant from, a fertiliser plant emitting atmospherically dispersed pollutants. The atmosphere near the fertiliser plant had average daily peak concentrations of 144 and 210 μg m −3 of SO 2 and NO 2, respectively. Growth was less near to, than at a distance from, the fertiliser plant. On average it was decreased by water stress while the effects of different amounts of nitrogen fertiliser were variable. Whilst there were a number of interactions involving nitrogen and water treatments, the most consistent were associated with the responses of the three cultivars at the two locations. The three cultivars performed similarly at the unpolluted control site, but there were major differences at the polluted site. These were most clearly exemplified by changes in the proportion of dry matter allocated to yields of grain and straw. At the unpolluted site, grain accounted for about 30% of the combined yields of grain and straw. At the polluted site, grain accounted for 1, 23 and 31% of the combined grain and straw yields of cultivars CO 43 (the most sensitive), TKM 9 and GR 3 (the most tolerant). Grain yields were closely related to numbers of filled grains per plant. At the polluted site, 98% of grains failed to develop in CO 43, whereas in GR 3, the number of panicles, and therefore the potential number of grains, was significantly enhanced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call