Abstract

AbstractThe quantitative importance of rainfall interception loss and the performance of the reformulated Gash model were evaluated as a function of basal area in Mexico's northeastern temperate forest communities. A sensitivity analysis as well as an iterative search of parameters matched interception loss measurements and assessments and isolated coefficient values that drive the model performance. Set hypothesis was tested with a total of 73 rainfalls recorded on four forest stands with different canopy cover for model fitting (39) and validation (34). The reformulated Gash model predicted well rainfall interception loss because mean deviations between recorded and modelled interception loss as a function of gross rainfall, MD, were <2.6% and 5.3% for fitting and validating parameter data sets, respectively. Basal area was negatively related to the model performance, but maximum projected MD range values can be found in most interception loss studies, for example, <7% when basal area is <5 m2 ha−1. The wet canopy evaporation rate and the canopy storage coefficient drive interception loss and the iterative parameter search showed that high wet canopy evaporation rates were expected in these forests. These parameters must be further studied to physically explain drivers of high wet canopy evaporation rates. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call