Abstract

Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) offer several advantages including full-diversity and single-symbol decodability. In an effort to assess their performance in quasi-static frequency nonselective i.i.d. Nakagami-m fading channels, we analyze the error rate, outage capacity, and information outage probability. First, based on an accurate closed-form formula for the average symbol pairwise error rate (SPER), we derive tight union upper and lower bounds on the symbol-error rate (SER). Second, we apply Gaussian and Gamma approximations to provide closed form expressions for the outage capacity. Third, using high signal-to-noise ratio (SNR) and moment-matching approximation techniques, we also derive accurate closed-form approximations for the information outage probability (IOP). Finally, we show that STBCs from CIODs provide full-diversity by deriving SER based and IOP-based asymptotic and instantaneous diversity orders. Monte-Carlo simulations show that the analytical results agree with simulation experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call