Abstract

In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additional training with external data). Three-axis acceleration and angular velocity data were obtained from 30 healthy male subjects by attaching an IMU to the middle of the left and right anterior superior iliac spines (ASIS). Internal and external tests were performed using our lab dataset and SisFall public dataset, respectively. The results showed that ANN and SVM were suitable for the time-series and discrete data, respectively. The classification performance generally decreased, and thus, specific feature vectors from the raw data were necessary when untrained motions were tested using a public dataset. Normalization made SVM and ANN more and less effective, respectively. Equalization increased the sensitivity, even though it did not improve the overall performance. The increase in the number of training data also improved the classification performance. Machine learning was vulnerable to untrained motions, and data of various movements were needed for the training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.