Abstract

The thermal performance of a natural draft dry cooling tower (NDDCT) under a crosswind has been investigated using a general-purpose CFD code. A three-dimensional study using the standard k-e turbulence model to simulate airflow in and around an NDDCT has been conducted. A parametric study has been carried out to examine the effect of crosswind velocity profile and air dry-bulb temperature on the thermal performance of an NDDCT. Two approaches have been considered in this study to quantify the crosswind effect. Firstly, simulations have been conducted at the nominal conditions and crosswind effect has been represented by thermal effectiveness parameter. Secondly, the ejected heat from the NDDCT has been maintained at a constant value (285 MW) and the crosswind effect has been represented by the change in the cooling tower approach parameter. After quantifying the effect of the crosswind on the thermal performance, windbreak walls have been introduced as a means of reducing this effect. The results in this paper show the importance of considering the crosswind velocity profile. Moreover, the introduction of windbreak walls has indicated an improvement in reducing the thermal performance losses due to the crosswind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.