Abstract

In this paper, the diffusion of solutes in natural clay from a concentrated solution consisting primarily of ammonium, sodium and chloride ions at a pH level of 8 was studied and was based on an existing 20-year-old landfill. Contaminant transport through clay liners was predicted using transport and reaction geochemical codes to help explain the experimental data. The model predicted the chloride anion diffusion and cation exchange processes for three different experiments: (1) small-scale interactions in compacted clay, (2) 1:1 European Union (EU) Directive demonstration experiments (0.5-m-thick clay barrier), and (3) analysis of a bore hole with core recovery drilled in an old landfill located above a similar type of clay as that studied in (1) and (2). Orders of magnitude between 10(-10) and 10(-9) m(2) s(-1) were used for the apparent diffusion coefficient to fit the chloride profiles at the different scales; however, at larger space and time scales, diffusion was retarded due to the presence of more consolidated, non-mechanically disturbed clay materials at large depths in a natural clay-rock emplacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.