Abstract

ABSTRACTWhen data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design with two correlated outcomes, a simulation study was conducted to compare the performance of MVMM to MLMs. The results showed that MVMM and MLM performed similarly when data were complete or missing completely at random. However, when outcome data were missing at random, MVMM continued to provide unbiased estimates, whereas MLM produced grossly biased estimates and severely inflated Type I error rates. As such, this study provides further support for using MVMM rather than univariate analyses, particularly when outcome data are incomplete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.