Abstract
ABSTRACTWe investigate the exact coverage and expected length properties of the model averaged tail area (MATA) confidence interval proposed by Turek and Fletcher, CSDA, 2012, in the context of two nested, normal linear regression models. The simpler model is obtained by applying a single linear constraint on the regression parameter vector of the full model. For given length of response vector and nominal coverage of the MATA confidence interval, we consider all possible models of this type and all possible true parameter values, together with a wide class of design matrices and parameters of interest. Our results show that, while not ideal, MATA confidence intervals perform surprisingly well in our regression scenario, provided that we use the minimum weight within the class of weights that we consider on the simpler model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.