Abstract

In the present article, a novel gas engine-driven heat pump (GEHP) which could independently provide heating, cooling, and hot water for the buildings with its autonomous power supply system was presented, and the cooling performance characteristics of GEHP using mixture refrigerant R134a/R152a were investigated experimentally. The thermophysical properties and flammability of this proposed mixture refrigerant were analyzed and experimented to approve that it could be used safely in GEHP. The experimental results indicated that the cooling capacity, waste heat recovered from cylinder jacket and exhaust gas, gas engine energy consumption, and compressor power increased with the increase of the gas engine speeds and evaporator water inlet flow rate, but changed in a small range with the increase of the evaporator water inlet temperature except cooling capacity. The generator power remained about 4.90 kW in different operating conditions. Furthermore, the coefficient of performance (COP) and the primary energy ratio (PER) of GEHP also increased with the increase of the evaporator water inlet flow rate and temperature, but decreased with the increase of gas engine speeds. Finally, maximum COP and PER with mixture refrigerant R134a/R152a has been estimated with 8.88 and 1.69 in the aforementioned conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call