Abstract

As part of minimizing the risk of crop losses due to herbivorous arthropods (here, mainly referring to insects and mites), most of the World’s commercial food production systems are subjected to several applications of pesticides before being harvested. Some crops are sprayed 10-20 times, while most field crops are sprayed 1-5 times during the growing sea‐ son. In the US alone, the average number of insecticide applications ranges from 1-3 for most of the major field crops, and the total annual costs of pesticide applications exceed $1.3 billion ([1], U.S. Department of Agriculture agricultural statistics services: www.nass.us‐ da.gov/). Several large ag-producing countries publish extensive details on insecticide use, including Australia, and the data presented below were collected from a public website (http://usda01.library.cornell.edu/usda/nass/AgriChemUsFruits//2000s/2008/AgriChemUs‐ Fruits-05-21-2008.pdf) on pesticide applications in the US in 2006. A somewhat extreme but also important example is the fresh sweet maize production in the US, which was grown on about 85,000 ha. Based on data from 14 US states, 20 different active ingredients of herbi‐ cides were applied an average 1.04 times to fresh sweet maize and amounted to about 2.6 kg of active ingredients of herbicides per ha. The same data suggested that about 3.5 kg of 23 different active ingredients of insecticides were applied on average 2.10 times per ha. Simi‐ larly, tomato fields (grown on about 42,000 ha in the US in 2006) were treated with 12 differ‐ ent active ingredients of herbicides, which were applied, on average, 1.14 times and the equivalent of about 0.7 kg of active ingredients per ha. Regarding insecticides, the same to‐ mato fields were treated with 32 different active ingredients, which were applied an average of 3.6 times and equal to about 4.9 kg of active ingredients per ha. While tomatoes and sweet corn may be close to the top of the list of growing crops receiving pesticide treatments, cau‐ liflower, celery, and many other horticultural crops and fruits are also subjected to intensive pesticide spraying regimes. Thus, farmers acknowledge that weeds and arthropods can po‐ tentially cause significant economic losses, and total pesticide application costs are low

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call