Abstract
Due to the increasing demand for electrochemical energy storage, various novel electrode and catalysis materials for supercapacitors and rechargeable batteries have developed over the last decade. The structure and characteristics of these catalyst materials have a major effect on the device's performance. In order to lower the costs associated with electrochemical systems, electrochemical systems, metal-free catalysis materials can be employed. In this study, metal-free catalysts composed of nitrogen (N) and sulfur (S) dual-doped multi-walled carbon nanotubes were synthesized using a straightforward and cost-effective single-step hydrothermal method. Carbon nanotubes served as the carbon source, while l-cysteine amino acid and thiourea acted as doping elements. As a result of the physicochemical characterization, many defects and a porous structure were noted, along with the successful insertion of nitrogen and sulfur into the carbon nanotube was confirmed. According to the cyclic voltammetry tests for the dual-doped samples in alkaline conditions, the D-CNT2 catalyst exhibited onset potentials of -0.30 V higher than the -0.37 V observed for the D-CNT3 catalyst. This indicates enhanced oxygen–reduction reaction due to the synergistic effects of the heteroatoms in the structure and the presence of chemically active sites. Moreover, the outstanding specific capacitance of the D-CNT2 catalyst (214.12 F g-1 at scanning rates of 1 mV s-1) reflects the effective porosity of the proposed catalyst. These findings highlight the potential of N/S dual–doped carbon nanotubes for electrocatalytic applications, contributing to efficient energy conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.