Abstract

Experts in finance and accounting select feature subset for corporate financial distress prediction according to their professional understanding of the characteristics of the features, while researchers in data mining often believe that data alone can tell everything and they use various mining techniques to search the feature subset without considering the financial and accounting meanings of the features. This paper investigates the performance of different financial distress prediction models with features selection approaches based on domain knowledge or data mining techniques. The empirical results show that there is no significant difference between the best classification performance of models with features selection guided by data mining techniques and that by domain knowledge. However, the combination of domain knowledge and genetic algorithm based features selection method can outperform unique domain knowledge and unique data mining based features selection method on AUC performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.