Abstract

Biochar (BC) and plant growth promoting bacteria (PGPR) have been widely applied to improve the qualities of heavy metal contaminated soil, while the synergy effect of BC and PGPR on the bioremediation of cadmium (Cd) contaminated soil was less studied. In this study, a novel PGPR strain SNB6 was isolated and then immobilized on BC as the multiple biochemical material (BCM) as well as combined with vetiver grass (Chrysopogon zizanioides L.) to form BC-PGPR-accumulator system. The promoting effects of BCM on bioremediation and soil micro-biology were comprehensively investigated. SEM and FTIR analysis indicated that the strain SNB6 was successfully fixed on BC and the functional groups between BC and SNB6 surface contributed to the immobilization effect. The BCM significantly enhanced the Cd content and bioaccumulation factor (BCF) of accumulator, about 412.35% and 403.41% higher than that of control, respectively. Meanwhile, the biomass of fresh and dry accumulator in the BCM treatment was 227.27% and 178.33% higher than that of control. In addition, the system significantly increased the proportion of HOAc-extractable Cd and soil micro-ecology. Microbial counts and soil enzyme activities in rhizosphere were both significantly improved by the interaction of BCM and C. zizanioides. Furthermore, the strain SNB6 in the rhizosphere interface was successfully colonized, and soil microbial community was evaluated to understand the microbial diversity after bioremediation. Our study indicated that the BCM could significantly enhance the bioremediation efficiency and drive the soil micro-ecology, and the BC-PGPR-accumulator system provided a feasible pathway to remediate heavy metal contaminated sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call