Abstract

IntroductionLimited field of view cone-beam computed tomographic (CBCT) imaging has been used to augment clinical testing of vertical root fractures (VRFs); however, the presence of gutta-percha (GP) in the canal space generates substantial imaging artifacts that make fracture detection difficult. The purpose of this study was to evaluate the influence of a zirconium (Zr)-based root filling material with radiologic properties that reduce beam hardening (BH) artifacts using CBCT imaging in the in vitro diagnosis of VRFs. MethodsOne hundred seventy-six single-rooted mandibular premolar teeth were obtained, and half of these teeth were filled with GP or Zr (CPoint; EndoTechnologies, LLC, Shrewsbury, MA). VRFs were induced in 44 decoronated teeth in each group using an Instron (Norwood, MA) Universal Testing Machine. Each root was then placed in a dry human mandible and imaged with the Carestream 9000 3D CBCT system (Carestream Dental, Atlanta, GA). The images were evaluated by 6 oral maxillofacial radiologists (OMRs) and residents. ResultsThe sensitivity was greater for detecting VRFs in the Zr group than the GP group (P = .035). However, the specificity was greater for the GP group than the Zr group (P = .028). Receiver operating characteristic area under the curve values were greater for the Zr group than the GP group, but these differences were not statistically significant. The OMRs outperformed the residents in the detection of VRFs in the Zr group with respect to specificity (P = .006) and positive predictive value (P = .012). ConclusionsThe reduced BH of the Zr group improved the sensitivity of the detection of artificially induced VRFs. The ability to detect VRFs in the Zr group was further enhanced by clinical experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.