Abstract

A zirconium-based metal–organic framework (DUT-69) was fabricated via a hydrothermal synthesis for U(VI) removal in aqueous solutions. Experimental results showed that the maximum adsorption capacity for U(VI) was 362.32 mg·g−1 at 303 K, pH = 6 and initial U(VI) concentration of 80 mg L−1. The adsorption process fit well with the pseudo-second-order kinetic and Langmuir models. Various characterizations indicated that complexation interactions was the central adsorption mechanism and electrostatic was the secondary. The carboxyl, Zr–O, and C–S bonds in the framework participated in the adsorption process. Reusability experiments showed that 80.34% adsorption rate could be maintained after 5 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.