Abstract
In the context of pipeline robots, the timely detection of faults is crucial in preventing safety incidents. In order to ensure the reliability and safety of the entire application process, robots' fault diagnosis techniques play a vital role. However, traditional diagnostic methods for motor drive end-bearing faults in pipeline robots are often ineffective when the operating conditions are variable. An efficient solution for fault diagnosis is the application of deep learning algorithms. This paper proposes a rolling bearing fault diagnosis method (PSO-ResNet) that combines a Particle Swarm Optimization algorithm (PSO) with a residual network. A number of vibration signal sensors are placed at different locations in the pipeline robot to obtain vibration signals from different parts. The input to the PSO-ResNet algorithm is a two-bit image obtained by continuous wavelet transform of the vibration signal. The accuracy of this fault diagnosis method is compared with different types of fault diagnosis algorithms, and the experimental analysis shows that PSO-ResNet has higher accuracy. The algorithm was also deployed on an Nvidia Jetson Nano and a Raspberry Pi 4B. Through comparative experimental analysis, the proposed fault diagnosis algorithm was chosen to be deployed on the Nvidia Jetson Nano and used as the core fault diagnosis control unit of the pipeline robot for practical scenarios. However, the PSO-ResNet model needs further improvement in terms of accuracy, which is the focus of future research work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.