Abstract

Based on the model of a typical alkaline fuel cell (AFC) with circulating potassium hydroxide (KOH) solution as electrolyte and oxygen as oxidant and the experimental data available in the current literature, thermodynamic–electrochemical analyses on the performance of the AFC are carried out, in which multi-irreversibilities such as charger-transfer, concentration and ohmic overpotentials are taken into account. Expressions for the power output and efficiency of the AFC are derived, from which the general performance characteristics of the AFC are discussed in detail. It is found that the power output and efficiency of the AFC first increase and then decrease as the electrolyte concentration is increased, and consequently, there exist the optimal electrolyte concentrations for different temperatures. It is also found that the power output is not a monotonic function of the electric current density while the efficiency is a monotonically decreasing function of the electric current density. According to the performance characteristic curves of the AFC, the optimal operation regions of some main parameters are determined. Moreover, a new multi-objective function is used to further optimize the characteristics of the AFC. Some significant results for the optimal design and operation of practical AFCs are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.