Abstract

In the present study we investigated the detectability of three-dimensional (3D) cocircular contours defined by binocular disparity and established the influence of a number of stimulus factors to their perception. In Experiment 1 we examined the depth range over which local elements are grouped in depth, and whether contour detectability systematically changed with the degree to which they are oriented in depth. We found that increasing the orientation of curved contours in depth improved detection performance. In Experiment 2, we examined the degree to which contour detection was disrupted by varying their continuity in depth by jittering the local depth position of contour elements. Detection performance declined with the increasing displacement of local contour elements in depth away from the depth orientation of the contour. Experiments 3 and 4 ascertained whether a detection advantage is afforded to 3D contours defined by local variations in luminance polarity and color. Local color and polarity differences can disrupt the two-dimensional grouping of local contour elements on the basis of similarity, but we tested whether continuity in depth facilitates grouping of contour elements differing in polarity and color. We found no detection advantage for 3D contours defined by local color and polarity variations, suggesting binocular disparity does not facilitate grouping in depth when local elements differ in color and polarity. These findings further suggest the visual system uses binocular disparity to detect contours, but is likely to involve systems tuned to luminance polarity and color.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call