Abstract
How much do anthropomorphisms influence the perception of users about whether they are conversing with a human or an algorithm in a chatbot environment? We develop a cognitive model using the constructs of anthropomorphism and explainability to explain user experiences with conversational journalism (CJ) in the context of chatbot news. We examine how users perceive anthropomorphic and explanatory cues, and how these stimuli influence user perception of and attitudes toward CJ. Anthropomorphic explanations of why and how certain items are recommended afford users a sense of humanness, which then affects trust and emotional assurance. Perceived humanness triggers a two-step flow of interaction by defining the baseline to make a judgment about the qualities of CJ and by affording the capacity to interact with chatbots concerning their intention to interact with chatbots. We develop practical implications relevant to chatbots and ascertain the significance of humanness as a social cue in CJ. We offer a theoretical lens through which to characterize humanness as a key mechanism of human–artificial intelligence (AI) interaction, of which the eventual goal is humans perceive AI as human beings. Our results help to better understand human–chatbot interaction in CJ by illustrating how humans interact with chatbots and explaining why humans accept the way of CJ.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.