Abstract

In previous work, we demonstrated that people reliably perceive variations in surface roughness when textured surfaces are explored with a rigid link between the surface and the skin [e.g., Klatzky and Lederman 1999; Klatzky et al. 2003]. Parallel experiments here investigated the potential of a force-feedback mouse to render surfaces varying in roughness. The stimuli were surfaces with alternating regions of high and low resistance to movement in the x (frontal) dimension (called ridges and grooves, respectively). Experiment 1 showed that magnitude ratings of roughness varied systematically with the spatial period of the resistance variation. Experiments 2 and 3 used a factorial design to disentangle the contributions of ridge and groove width. The stimuli constituted eight values of groove width at each of five levels of ridge width (Experiment 2) or the reverse (Experiment 3). Roughness magnitude increased with ridge width while remaining essentially invariant over groove width. Kinematic variations in exploration were observed across the surfaces. The data point to the promise of using inexpensive devices to create virtual textural variations under conditions of unconstrained exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.