Abstract

All published rotamer libraries contain some rotamers that exhibit impossible internal atomic overlaps if built in ideal geometry with all hydrogen atoms. Removal of uncertain residues (mainly those with B-factors ≥40 or van der Waals overlaps ≥0.4 Å) greatly improves the clustering of rotamer populations. Asn, Gln, or His side chains additionally benefit from flipping of their planar terminal groups when required by atomic overlaps or H-bonding. Sensitivity to skew and to the boundaries of χ angle bins is avoided by using modes rather than traditional mean values. Rotamer definitions are listed both as the modal values and in a preferred version that maximizes common atoms between related rotamers. The resulting library shows significant differences from previous ones, differences validated by considering the likelihood of systematic misfitting of models to electron density maps and by plotting changes in rotamer frequency with B-factor. Few rotamers now show atomic overlaps in ideal geometry; those overlaps are relatively small and can be understood in terms of bond angle distortions compensated by favorable interactions. The new library covers 94.5% of examples in the highest quality protein data with 153 rotamers and can make a significant contribution to improving the accuracy of new structures. Proteins 2000;40:389–408. © 2000 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.