Abstract

In the quantum Teichmuller theory, the mapping-class groups of punctured surfaces are represented projectively based on Penner coordinates. Algebraically, the representation is based on the pentagon equation together with pair of additional relations. Two more examples of solutions of these equations are connected with matrix (or operator) generalizations of the Rogers dilogarithm. The corresponding central charges are rational. It is possible that this system of equations admits many different solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.