Abstract

Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and β-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, β-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.

Highlights

  • Plant structural polysaccharides are the most abundant and renewable biomass in the biosphere

  • Five different types of biomass were used as carbon sources: microcrystalline cellulose powder (MCL) (Celuflok 200 - Celuflok, Sao Paulo, Brazil), sugar cane bagasse derived from sulfuric acid treatment (SAT), bagasse derived from steam-explosion treatment (SET), bagasse derived from hydrothermal treatment (HDT) and integral sugar cane bagasse (SCB)

  • The relative content of cellulose of these substrates decreased by 71% for SAT, 62% for SET, 43% for HDT, 12% for MCL and 10% for SCB

Read more

Summary

Introduction

Plant structural polysaccharides are the most abundant and renewable biomass in the biosphere. The current schemes for the biotechnological conversion of plant cell wall polysaccharides rely on first reducing biomass recalcitrance through a pretreatment step, and afterward, enzymatic cocktails are needed to breakdown biomass into more simple, fermentable saccharides, which could be fed into several bioprocesses, such as bioethanol production. Despite the advantages of enzyme-catalyzed processes, i.e., speed, specificity and mildness, the high cost of enzyme production and low catalytic efficiency are still major hindrances for cellulosic bioethanol. Relevant biotechnological challenges in this field include the improvement of the catalytic efficiency of enzymes, the economic benefit and the synergy between the type of pretreatment and enzymatic load, and reduction of the cost of enzyme production by filamentous fungi [2,3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.