Abstract

Experiments are reported where a collision-free plasma cloud penetrates a magnetic barrier by self-polarization. Two closely related effects, both fundamental for the penetration mechanism, are studied quantitatively: anomalous fast magnetic field penetration (two orders of magnitude faster than classical), and anomalous fast electron transport (three orders of magnitude faster than classical and two orders of magnitude faster than Bohm diffusion). It is concluded that they are both mediated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop which is set up in the plasma in the penetration process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.