Abstract
The pendrin/SLC26A4 Cl(-)/HCO(3)(-) exchanger, encoded by the PDS gene, is expressed in cortical collecting duct (CCD) non-A intercalated cells. Pendrin is essential for CCD bicarbonate secretion and is also involved in NaCl balance and blood pressure regulation. The intestinal peptide uroguanylin (UGN) is produced in response to oral salt load and can function as an "intestinal natriuretic hormone." We aimed to investigate whether UGN modulates pendrin activity and to explore the molecular mechanisms responsible for this modulation. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. UGN decreased endogenous pendrin mRNA levels in HEK293 cells. A 4.2-kb human PDS (hPDS) promoter sequence and consecutive 5' deletion products were cloned into luciferase reporter vectors and transiently transfected into HEK293 cells. Exposure of transfected cells to UGN decreased hPDS promoter activity. This UGN-induced effect on the hPDS promoter occurred within a 52-bp region encompassing a single heat shock element (HSE). The effect of UGN on the promoter was abolished when the HSE located between nt -1119 and -1115 was absent or was mutated. Furthermore, treatment of HEK293 cells with heat shock factor 1 (HSF1) small interfering RNA (siRNA) reversed the UGN-induced decrease in endogenous PDS mRNA level. In conclusion, pendrin-mediated Cl(-)/HCO(3)(-) exchange in the renal tubule may be regulated transcriptionally by the peptide hormone UGN. UGN exerts its inhibitory activity on the hPDS promoter likely via HSF1 action at a defined HSE site. These data define a novel signaling pathway involved in the enterorenal axis controlling electrolyte and water homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.