Abstract

The structural behaviour of the β-Na0.33V2O5 active material in a composite electrode is determined during discharge in the 3.8/2.2 V potential range (0 ≤ x < 1.66 in LixNa0.33V2O5) using X-ray diffraction combined with Raman microspectrometry. In spite of the existence of three well defined voltage plateaus, we provide evidence here for very weak structural changes throughout the lithium intercalation process, both at the long range order and local scale, involving mainly minor unit cell parameter variations. This result contrasts with the sharp phase transitions with one-phase and large two-phase regions usually observed for Li intercalation compounds exhibiting successive voltage plateaux separated by potential drops. The present findings demonstrate the reliability of a lithium filling scheme in the β-Na0.33V2O5 3D host lattice involving no phase transition in a remarkably wide Li composition range. Furthermore, new kinetic data for the electrochemical Li insertion reaction into β-Na0.33V2O5 are reported using AC impedance spectroscopy, which are discussed in relation with the specific structural response. This peculiar behaviour highlights the interest of such rigid tunnel framework to minimize the structural stress induced by lithium insertion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.