Abstract
In this contribution, we present theoretical modeling of the interaction between rare gas matrices and a trifluoride guest anion, as well as its quantitative effect on measured vibrational spectra. Using a combination of coupled-cluster electronic structure calculations and a many-body potential expansion coupled with permutation invariant polynomial fitting and anharmonic vibrational spectrum simulations, we shed light on the origin of the trifluoride matrix effects observed experimentally. The theoretical spectra are found to reproduce accurately the measured data while providing deeper insights into the effects of the guest-host interaction. The investigations reveal that neon can only stabilize trifluoride in hexagonal cavities formed by double vacancies, while argon can host the anion in a variety of cavities ranging from zero to two defects in the matrix. The origin of this structural variability can be traced back to the disparate strengths of the host-host interactions in neon and argon. The present work demonstrates the importance of theoretical modeling to complement matrix isolation experiments, which alone do not provide direct information about the structure of the matrices or about the physical origin of their interaction and of their spectroscopic signature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.