Abstract

The classical Peano–Sard theorem is a very useful result in approximation theory, bounding the errors of approximations that are exact on sets of polynomials. A fractional version was developed by Diethelm for fractional derivatives of Riemann–Liouville type, which we here extend to fractional derivatives of Caputo type. We indicate some applications to quadrature and interpolation formulae. These results will be useful in the approximate solution of fractional differential equations involving Caputo-type operators, which are often said to be more natural for applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.