Abstract

In fatigue design of welded joints according to the notch stress intensity factor (NSIF) approach, the weld toe profile is assumed to be a sharp V-notch having tip radius equal to zero, while the root side is assumed to be a pre-crack in the structure. The Peak Stress Method (PSM) is an engineering, FE-oriented method to estimate the NSIFs starting from the singular linear elastic peak stresses calculated at the V-notch or crack tips by using a coarse FE mesh. The element type is kept constant and the average element size can be chosen arbitrarily within a given range. The method is used in conjunction with Ansys software. The FE meshes are claimed to be coarse in comparison to those necessary to evaluate the NSIFs from the local stress distributions. Two-dimensional as well as three dimensional FE analyses can be adopted to apply the method. By using the averaged Strain Energy Density (SED, which can be expressed as a function of the relevant NSIFs) as a fatigue strength criterion, a so-called equivalent peak stress is defined to assess either weld toe or weld root fatigue failures in conjunction with a properly calibrated design curve. After presenting the theoretical background of the method, the paper presents a review of applications of the PSM relevant to steel welded joints under uniaxial as well as multiaxial fatigue loadings. Because of the relatively coarse FE analyses required and simplicity of post-processing the calculated peak stresses, the PSM might be useful in the everyday design practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.