Abstract

RationaleThe selective type IV phosphodiesterase inhibitor, rolipram, has been shown to improve long-term memory and can reverse the cholinergic deficit caused by scopolamine. However, the underlying mechanisms of action of rolipram remain obscure.ObjectivesThe present study investigates the effect of rolipram in a serotonergic-deficit model of acute tryptophan depletion (ATD). In addition, the levels of plasma tryptophan (TRP) were compared to object recognition performance.Materials and methodsThe experiments were conducted using male Wistar rats. The time-dependent effect of ATD treatment (a gelatin-based protein mixture) on plasma TRP levels (0, 1, 3, and 6 h after injection) and object recognition task (ORT) performance (0.5, 1, 3, and 6 h after ATD treatment) was examined. The effect of rolipram (0, 0.01, 0.03, and 0.1 mg/kg, i.p.) was tested in the condition in which ATD induced a clear memory deficit.ResultsATD significantly lowered the plasma TRP ratio (TRP/Σlarge neutral amino acid) with a maximum of 48%, approximately 1 h after administration. Furthermore, ATD impairs ORT performance when administered 3 h before testing. Rolipram (0.1 mg/kg) reversed the memory deficit induced by ATD in a dose-dependent manner.ConclusionsOn the basis of previous studies and the ability to reverse a serotonergic deficit, we suggest that rolipram may act through elevation of cyclic adenosine monophosphate levels and subsequent increase in neurotransmitter release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call