Abstract
Planar cell polarity (PCP) is a property of epithelial tissues where cellular structures coordinately orient along a two-dimensional plane lying orthogonal to the axis of apical-basal polarity. PCP is particularly striking in tissues where multiciliate cells generate a directed fluid flow, as seen, for example, in the ciliated epithelia lining the respiratory airways or the ventricles of the brain. To produce directed flow, ciliated cells orient along a common planar axis in a direction set by tissue patterning, but how this is achieved in any ciliated epithelium is unknown. Here, we show that the planar orientation of Xenopus multiciliate cells is disrupted when components in the PCP-signaling pathway are altered non-cell-autonomously. We also show that wild-type ciliated cells located at a mutant clone border reorient toward cells with low Vangl2 or high Frizzled activity and away from those with high Vangl2 activity. These results indicate that the PCP pathway provides directional non-cell-autonomous cues to orient ciliated cells as they differentiate, thus playing a critical role in establishing directed ciliary flow.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.