Abstract
We develop a class of regression-based estimators, called Principal Components Difference-in-Differences (PCDID) estimators, for treatment effect estimation. Analogous to a control function approach, PCDID uses factor proxies constructed from control units to control for unobserved trends, assuming that the unobservables follow an interactive effects structure. We clarify the conditions under which the estimands in this regression-based approach represent useful causal parameters of interest. We establish consistency and asymptotic normality results of PCDID estimators under minimal assumptions on the specification of time trends. The PCDID approach is illustrated in an empirical exercise that examines the effects of welfare waiver programs on welfare caseloads in the United States.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.