Abstract

Flowering is the transition from vegetative to reproductive growth and is critical for plant adaptation and reproduction. FLOWERING LOCUS C (FLC) plays a central role in flowering time control, and dissecting its regulation mechanism provides essential information for crop improvement. Here, we report that DECAPPING5 (DCP5), a component of processing bodies (P-bodies), regulates FLC transcription and flowering time in Arabidopsis (Arabidopsis thaliana). DCP5 and its interacting partner SISTER OF FCA (SSF) undergo liquid-liquid phase separation (LLPS) that is mediated by their prion-like domains (PrDs). Enhancing or attenuating the LLPS of both proteins using transgenic methods greatly affects their ability to regulate FLC and flowering time. DCP5 regulates FLC transcription by modulating RNA polymerase II enrichment at the FLC locus. DCP5 requires SSF for FLC regulation, and loss of SSF or its PrD disrupts DCP5 function. Our results reveal that DCP5 interacts with SSF, and the nuclear DCP5-SSF complex regulates FLC expression at the transcriptional level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call