Abstract

We show an interesting pairwise balanced design (PBD)-closure result for the set of lengths of constant-composition codes whose distance and size meet certain conditions. A consequence of this PBD-closure result is that the size of optimal constant-composition codes can be determined for infinite families of parameter sets from just a single example of an optimal code. As an application, the sizes of several infinite families of optimal constant-composition codes are derived. In particular, the problem of determining the size of optimal constant-composition codes having distance four and weight three is solved for all lengths sufficiently large. This problem was previously unresolved for odd lengths, except for lengths seven and eleven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.