Abstract

The distal Pauzhetka tephra, formed by a large caldera-forming volcanic eruption in South Kamchatka, has been identified in eleven recently recovered marine sediment cores based on major and trace element compositions of tephra glass. Ten SO264 cores form a transect along the Emperor Seamount Chain (ESC) in the Northwest (NW) Pacific between ∼50.3° and ∼45°N, 800–1200 km southeast of the Pauzhetka caldera. One additional core LV28-41-4 was retrieved in the Okhotsk Sea, ∼600 km west of the caldera. The Pauzhetka tephra glass shards have a characteristic medium-K rhyolite composition and trace element content compatible with the rear-arc position of the source volcano that ensures their identification. In the NW Pacific SO264 cores, the tephra is preserved as layers in cores 33, 47, 49, 53, 55, 56 and 62, as a lens in core 45, and as cryptotephra in cores 57 and 66. It forms a cryptotephra in the Okhotsk Sea core LV28-41-4. Distinctively high XRF-retrieved K/Ti and K/Fe ratios compared to those for the host sediments help identify the Pauzhetka tephra. According to our refined stable oxygen isotope (δ18O)- and magneto-stratigraphy of two studied and two reference cores, the Pauzhetka tephra occurs within a local δ18O maximum during a transition from marine isotope stage 12 to 11c (Termination V) and below a paleointensity minimum referred to as the Bermuda excursion, at ca. 418 ka. Using the tephra age as an isochron, we show that average linear sedimentation rates decrease southward along a transect of the SO264 cores, except in core 55. It partially reflects an intensification of mid-depth currents causing winnowing, erosion or non-deposition along the ESC over the past 418 kyr. An increased linear sedimentation rate in core 55, recovered from the southern leeward side of the Minnetonka Seamount, appears to record the pelagic accumulation protected from the mid-depth current influence. Our findings expand the former ash dispersal area farther southeast in the NW Pacific and southwest in the Okhotsk Sea. The new data on the tephra thickness supports the axis direction of the fallout zone southeast of the Pauzhetka caldera. Our results suggest the Pauzhetka tephra as a key middle Pleistocene isochron for the stratigraphy and correlation of the NW Pacific and Okhotsk Sea sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.