Abstract

IL-17C is an important epithelial cell-derived cytokine activating innate immunity by the induction of antimicrobial peptides and cytokines. Here, we investigated the role of the cytosolic pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) for the Staphylococcus aureus-mediated induction of IL-17C. Activation of NOD2 in HEK293 cells overexpressing NOD2 induced the IL-17C promoter, an activity that was significantly reduced in cells overexpressing the Crohn's disease-associated NOD2 mutation 3020insC (1007fs) or the Crohn's disease- and atopic dermatitis-associated NOD2-R702W variant. The first NF-κB-binding site in the IL-17C promoter was critical for NOD2-mediated IL-17C induction. Infection of human primary keratinocytes with S. aureus induced NOD2 and IL-17C gene expression. Overexpression of NOD2 in keratinocytes augmented S. aureus-mediated IL-17C gene expression as compared with NOD2-R702W overexpression. S. aureus-induced IL-17C expression was diminished in NOD2 small interfering RNA (siRNA)-treated keratinocytes. Moreover, significantly less S. aureus bacteria survived in keratinocytes overexpressing NOD2 but not in cells overexpressing the NOD2-R702W variant. Finally, S. aureus showed an increased survival in keratinocytes treated with NOD2 or IL-17C siRNA. In summary, our study provides evidence that S. aureus activates NOD2 in keratinocytes, resulting in an increased expression of IL-17C, a mechanism that may be dysregulated in atopic dermatitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call