Abstract

Pathogen associated molecular pattern (PAMP) triggered immunity (PTI) is the first line of plant defense. We hypothesized that the absence of pattern recognition receptors (PRRs) in plants could influence the rhizosphere microbiome. Here, we report sequencing of the 16S ribosomal RNA gene and the fungal ribosomal RNA internal transcribed spacer region of rhizosphere DNA from three Arabidopsis PRR mutants involved in plant innate immunity (efr1, fls2, and cerk1). We conducted experiments in a growth chamber using native soil from the Red River Farm (Terral, OK, USA) to detect microbial community shifts in the rhizosphere that may occur in the absence of PRR receptors compared to wild-type (WT; Col-0) plants. No difference in the α-diversity of the rhizosphere microbial population was observed between the PRR mutants tested and the WT. Plant host genotype had a significant impact in bacterial β-diversity only between the fls2 mutant and the WT. Surprisingly, no significant changes in fungal β-diversity were observed between the PRR mutants and WT, although we observed an increase in relative abundance for the cup fungi (Pezizaceae) in the cerk1 mutant. This finding suggests that the FLS2 receptor can modulate the rhizosphere-associated microbiome β-diversity and expands the list of current known genotypes that can modulate the rhizosphere microbiota.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call