Abstract

The main aspects of the summertime circulation and dynamics of the Patos Lagoon, a system located in southern Brazil and considered as one of the world's largest choked coastal lagoons, are studied through the analysis of time series of wind stress, water level and freshwater discharge, combined with the results of a barotropic circulation model. The longitudinal wind component has been verified as the main driving force, generating a set-up/set-down mechanism of oscillation with the nodal line in the midlagoon area. The period of this oscillation coincides with the passages of frontal systems for this region. The sea breeze acts as a secondary effect, being clearly observed in the northern part of the lagoon. Freshwater discharge is expected to cause variations in water level on the seasonal band and to a lesser degree in the 8–15 day time-scale. The tidal signal is of importance only near the exit to the ocean, being strongly reduced in the interior of the lagoon. Model results suggest a wind set-up momentum balance in the longitudinal direction in the deeper parts of the lagoon; near the margins, the longitudinal momentum balance is mostly of frictional form, with the wind stress being balanced by the bottom friction. In the lateral direction, a geostrophic balance is verified in both regions. The wind forced circulation is characterized by the presence of several cells with downwind velocity near the margins and upwind return flow occurring in the central areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.