Abstract

1. Exogenous glycollate was rapidly metabolized in both the light and the dark by photoautotrophically grown Chlorella pyrenoidosa. 2. The incorporation of (14)C from [1-(14)C]glycollate by these cells was inhibited by the tricarboxylic acid-cycle inhibitors monofluoroacetate, diethylmalonate and arsenite, and also by alpha-hydroxypyrid-2-ylmethanesulphonate and isonicotinylhydrazine. 3. Short-term kinetic experiments showed over 80% of the total (14)C present in the soluble fraction from the cells to be in glycine and serine after 10s. This percentage decreased with time whereas the percentage radioactivity in glycerate increased for up to 30s then remained steady. The percentage of the total radioactivity present in citrate increased over the experimental period. Malate was the only other tricarboxylic acid-cycle intermediate to become labelled. 4. The kinetic and inhibitor experiments supported the following pathway of glycollate incorporation: glycollate --> glyoxylate --> glycine --> serine --> hydroxypyruvate --> glycerate --> 3-phosphoglycerate --> 2-phosphoglycerate --> phosphoenolpyruvate --> pyruvate --> acetyl-CoA. 5. The specific activities of the enzymes catalysing this metabolic sequence in cell-free extracts were great enough to account for the observed rate of glycollate metabolism of 0.25mumol/h per mg dry wt. of cells in the light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.