Abstract

The pre-steady-state reduction by NADPH of NADH:Q oxidoreductase, as present in submitochondrial particles, has been further investigated with the rapid-mixing, rapid-freezing technique. It was found that trypsin treatment, that had previously been used to inactivate the transhydrogenase activity (Bakker, P.T.A. and Albracht, S.P.J. (1986) Biochim. Biophys. Acta 850, 413-422), considerably affected the stability at pH 6.2 of the NAD(P)H oxidation activity of submitochondrial particles. Use of the inhibitor butadione circumvented this problem, thus allowing a more careful investigation of the kinetics at pH 6.2. In the presence of the inhibitor rotenone it was found that 50% of the Fe-S clusters 3 and all of the Fe-S clusters 2 and 4 could be reduced by NADPH within 30 ms at pH 6.2. The remainder of the Fe-S clusters 3 and all of the Fe-S clusters 1 were reduced slowly (complete reduction only after more than 60 s). It was concluded that these latter Fe-S clusters play no role in the NADPH oxidation activity. In the absence of rotenone at pH 6.2 only 50% of the Fe-S clusters 2-4 could be reduced within 30 ms, while Fe-S cluster 1 was again not reduced. This difference was attributed to the fast reoxidation of part of the Fe-S clusters 2 and 4 by ubiquinone. At pH 8.0, where the NADPH oxidation activity is almost zero, 50% of the Fe-S clusters 2-4 could still be reduced by NADPH within 30 ms, while Fe-S cluster 1 was not reduced. The presence of rotenone had no effect on this reduction. From these observations it is concluded that the Fe-S clusters 2 and 4, which were rapidly reduced by NADPH and reoxidised by ubiquinone at pH 6.2, could not be reduced by NADPH at 8.0. This provides an explanation why NADH:Q oxidoreductase was not able to oxidise NADPH at pH 8.0, while part of the Fe-S clusters were still rapidly reduced. As a working hypothesis a dimeric structure for NADH:Q oxidoreductase is proposed. One protomer (B) contains FMN and Fe-S clusters 1-4 in equal amounts; the other protomer (A) is identical except for the absence of Fe-S cluster 1. NADH is able to react with both protomers, while NADPH only reacts with protomer A. A pH-dependent electron transfer from protomer A to protomer B is proposed, which would allow the reduction of Fe-S clusters 2 and 4 of protomer B by NADPH at pH 6.2, which is required for NADPH:Q oxidoreductase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.