Abstract

AbstractThis study analyzes the association between wintertime high-wind events (HWEs) in the northeastern United States and extratropical cyclones. Sustained wind maxima in the daily summary data from the National Climatic Data Center’s integrated surface database are analyzed for 1979–2012. For each station, a generalized Pareto distribution is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at 1, 3, and 5 yr are derived. Wind events meeting the return-level criteria are termed HWEs. The HWEs occurring on the same day are grouped into simultaneous wind exceedance dates, termed multistation events. In a separate analysis, extratropical cyclones are tracked using ERA-Interim. The multistation events are associated with the extratropical cyclone tracks on the basis of cyclone proximity on the day of the event. The multistation wind events are found to be most often associated with cyclones traveling from southwest to northeast, originating west of the Appalachian Mountains. To quantify the relative frequency of the strong-wind-associated cyclones, the full set of northeastern cyclone tracks is separated on the basis of path, using a crosshairs algorithm designed for this region. The tracks separate into an evenly distributed set of four pathways approaching the northeastern United States: from due west, from the southwest, and from the southeast and storms starting off the coast north of the Carolinas. Using the frequency of the tracks in each of the pathways, it is shown that the storms associated with multistation wind events are most likely to approach the northeastern United States from the southwest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.