Abstract

NLRP3 inflammasome is known to be involved in inflammatory bowel diseases. However, it is controversial whether it is pathogenic or beneficial. This study evaluated the roles of NLRP3 inflammasome in the pathogenesis of inflammatory bowel disease in IL-10-/- mice and humans. NLRP3 inflammasome in colonic mucosa, macrophages, and colonic epithelial cells were analysed by western blotting. The NLRP3 inflammasome components were studied by sucrose density gradient fractionation, chemical cross-linking, and co-immunoprecipitation. The role of NLPR3 inflammasome in the pathogenesis of colitis was extensively evaluated in IL-10-/- mice, using a specific NLPR3 inflammasome inhibitor glyburide. NLRP3 inflammasome was upregulated in colonic mucosa of both IL-10-/- mice and Crohn's patients. NLRP3 inflammasome activity in IL-10-/- mice was elevated prior to colitis onset; it progressively increased as disease worsened and peaked as macroscopic disease emerged. NLRP3 inflammasome was found in both intestinal epithelial cells and colonic macrophages, as a large complex with a molecular weight of ≥ 360 kDa in size. In the absence of IL-10, NLRP3 inflammasome was spontaneously active and more robustly responsive when activated by LPS and nigericin. Glyburide markedly suppressed NLRP3 inflammasome expression/activation in IL-10-/- mice, leading to not only alleviation of ongoing colitis but also prevention/delay of disease onset. Glyburide also effectively inhibited the release of proinflammatory cytokines/chemokines by mucosal explants from Crohn's patients. Abnormal activation of NLRP3 inflammasome plays a major pathogenic role in the development of chronic colitis in IL-10-/- mice and humans. Glyburide, an FDA-approved drug, may have great potential in the management of inflammatory bowel diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.