Abstract

Over-activation of calpain, a ubiquitous calcium-sensitive protease, has been linked to a variety of degenerative conditions in the brain and several other tissues. Dozens of substrates for calpain have been identified and several of these have been used to measure activation of the protease in the context of experimentally induced and naturally occurring pathologies. Calpain-mediated cleavage of the cytoskeletal protein spectrin, in particular, results in a set of large breakdown products (BDPs) that are unique in that they are unusually stable. Over the last 15 years, measurements of BDPs in experimental models of stroke-type excitotoxicity, hypoxia/ischemia, vasospasm, epilepsy, toxin exposure, brain injury, kidney malfunction, and genetic defects, have established that calpain activation is an early and causal event in the degeneration that ensues from acute, definable insults. The BDPs also have been found to increase with normal ageing and in patients with Alzheimer's disease, and the calpain activity may be involved in related apoptotic processes in conjunction with the caspase family of proteases. Thus, it has become increasingly clear that regardless of the mode of disturbance in calcium homeostasis or the cell type involved, calpain is critical to the development of pathology and therefore a distinct and powerful therapeutic target. The recent development of antibodies that recognize the site at which spectrin is cleaved has greatly facilitated the temporal and spatial resolution of calpain activation in situ. Accordingly, sensitive spectrin breakdown assays now are utilized to identify potential toxic side-effects of compounds and to develop calpain inhibitors for a wide range of indications including stroke, cerebral vasospasm, and kidney failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.