Abstract

Ankylosing spondyloarthritis (AS) is a chronic inflammatory disease that involves the axial joints and entheses. Extra-spinal manifestations such as anterior uveitis, psoriasis, and colitis also occur frequently. This review on the pathogenesis of AS includes an update on the recent discoveries within the field. HLA-B*27 is still considered of major importance in the pathogenesis, and it has recently been shown to profoundly affect the gut microbiome and its metabolites and the handling of bacteria during infection. Biochemical and biophysical properties of HLA-B*27 influence its ability to misfold, to induce an endoplasmic reticulum stress response, and to promote autophagy/unfolded protein responses (UPR). HLA-B*27 free heavy chains may induce inflammation through T cells, NK cells, and myeloid cells. Induction of UPR genes results in release of tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), IL-23, and interferon-γ and increase in T helper (Th) 17 cells. Several other HLA-B and non-B molecules have been associated with AS, although their role in the pathogenesis is unknown. Genotypes of endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 have been associated with alterations in the antigenic pool expressed by HLA-B*27 molecules. In the gut, innate immune cells type 3 (ILC3) influence T cell expression of IL-17 and IL-22. Gamma-delta (γ/δ) T cells are induced by IL-23 to produce IL-17. IL-7 induces mucosa-associated invariant T (MAIT) cells to produce IL-17. Besides the microbiome, zonulin may be important through its effects on the permeability of tight junctions in the intestinal epithelial barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call