Abstract
The Path Partition Conjecture (PPC) states that if G is any graph and (a, b) any pair of positive integers such that G has no path with more than a + b vertices, then there exists a partition (A, B) of the vertex set of G such that A has no path with more than a vertices, and B has no path with more than b vertices. We present a brief history of the PPC, discuss its relation to other conjectures and examine results supporting the PPC that have appeared in the literature since its first formulation in 1981. We conclude with a few related open problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.