Abstract

A recently discovered B chromosome in the parasitoid wasp Trichogramma kaykai was found to be transmitted through males only. Shortly after fertilization, this chromosome eliminates the paternal chromosome set leaving the maternal chromosomes and itself intact. Consequently, the sex ratio in these wasps is changed in favour of males by modifying fertilized diploid eggs into male haploid offspring. In this study, we show that in fertilized eggs at the first mitosis the paternal sex ratio (PSR) chromosome condenses the paternal chromosomes into a so-called paternal chromatin mass (PCM). During this process, the PSR chromosome is morphologically unaffected and is incorporated into the nucleus containing the maternal chromosomes. In the first five mitotic divisions, 67% of the PCMs are associated with one of the nuclei in the embryo. Furthermore, in embryos with an unassociated PCM, all nuclei are at the same mitotic stage, whereas 68% of the PCM-associated nuclei are at a different mitotic phase than the other nuclei in the embryo. Our observations reveal an obvious similarity of the mode of action of the PSR chromosome in T. kaykai with that of the PSR-induced paternal genome loss in the unrelated wasp Nasonia vitripennis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call