Abstract
Technology and science are often successful in discontinuities ("disruptive innovations" or "leapfrogging"), in turn allowing true, big societal development by entire changes in technology rather than by minuscule stepwise improvements. Examples are the emergence of modern computer science by inventing the field-effect transistor rather than further fine-tuning the "Röhrentransistor"; the development of (organic) light-emitting diodes in advance of the "Gasglühstrumpf"; CRISPR/Cas exceeding any previous genetic method or Ziegler-Natta polymerization enabling stereoregular polypropylene (PP) and high-density polyethylene (HDPE) in advance of free-radical polymerization. Where may the frogs in polymer science in the future "jump" to? Contemplating past achievements in (synthetic) polymer science, such as living polymerization, "click" chemistry, supramolecular chemistry, the potentially "leaping" areas of self-healing and (bio)degradable materials, amyloids, and biomaterials are reflected upon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.