Abstract
PurposeAt present, carbonated drinks such as cola are especially favored by the younger generation. But because of its acid, it often leads to tooth demineralization, resulting in “cola tooth”. However, the influence of cola on the corrosion resistance of passive film of TiA10 alloy restorative materials is rarely reported. The purpose of this study was to analysis the corrosion resistance, composition of the passive film of TA10 alloy in different concentrations of Cola.Design/methodology/approachThe passive behavior of TA10 alloy in artificial saliva (AS) and Cola was studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, cyclic voltammetry, Mott-Schottky techniques and combined with X-ray photoelectron spectroscopy and Auger electron spectroscopy (AES) surface analysis.FindingsWith the increase of cola content, the self-corrosion current density of the alloy increases sharply, and the corrosion resistance of the passive film is the best in AS, while Rp in cola is reduced to half of that in AS. The thickness of the passive film in AS, AS +cola and cola is about 9.5 nm, 7.5 nm and 6 nm, respectively. The passive film in cola has more defects and the carrier density is 1.55 times as high as that in AS. Cola can weaken the formation process of the protected oxide, promote the formation of high valence Ti-oxides and increase the content of Mo-oxides in the passive film.Originality/valueThese results have important guiding significance for the safe use of the alloy in the complex oral environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.